Research Article

SQﬁtheticBiology

pubs.acs.org/synthbio

A Methodology to Annotate Systems Biology Markup Language
Models with the Synthetic Biology Open Language

Nicholas Roehner*" and Chris J. Myers**

TDepartment of Bioengineering, University of Utah, Salt Lake City, Utah 84112, United States
*Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112, United States

© Supporting Information

ABSTRACT: Recently, we have begun to witness the potential of synthetic
biology, noted here in the form of bacteria and yeast that have been genetically
engineered to produce biofuels, manufacture drug precursors, and even invade
tumor cells. The success of these projects, however, has often failed in translation
and application to new projects, a problem exacerbated by a lack of engineering
standards that combine descriptions of the structure and function of DNA. To
address this need, this paper describes a methodology to connect the systems
biology markup language (SBML) to the synthetic biology open language (SBOL), o

Concentration

Time

existing standards that describe biochemical models and DNA components,

respectively. Our methodology involves first annotating SBML model elements such as species and reactions with SBOL DNA
components. A graph is then constructed from the model, with vertices corresponding to elements within the model and edges
corresponding to the cause-and-effect relationships between these elements. Lastly, the graph is traversed to assemble the
annotating DNA components into a composite DNA component, which is used to annotate the model itself and can be
referenced by other composite models and DNA components. In this way, our methodology can be used to build up a
hierarchical library of models annotated with DNA components. Such a library is a useful input to any future genetic technology
mapping algorithm that would automate the process of composing DNA components to satisfy a behavioral specification. Our
methodology for SBML-to-SBOL annotation is implemented in the latest version of our genetic design automation (GDA)

software tool, iBioSim.

KEYWORDS: model annotation, SBML, SBOL, genetic design automation, iBioSim

The last ten years have witnessed the potential of synthetic
biology to improve a diversity of fields, including energy
production, pollution control, chemical manufacturing, and
medicine. In particular, we note the development of bacteria
and yeast that have been genetically engineered to produce
biofuels,"”> consume toxic waste,”* manufacture drug pre-
cursors,” and even invade tumor cells.® The successes of these
individual projects, however, have often failed in translation and
application to new projects, a problem exacerbated by the lack
of a genetic engineering framework based on standards that
combine descriptions of the structure and function of DNA.”~®
In order to provide a basis for future genetic engineering
frameworks, we present a methodolo%y for combining the
synthetic biology open language (SBOL)'®"" and systems biology
markup language (SBML),'” two existing standards that
together can capture the structure and function of DNA.
Ideally, a synthetic biologist could design biological systems
at a fairly high level of abstraction, focusing on a desired
behavior rather than the DNA components used to implement
said behavior. Such a synthetic biologist would use genetic design
automation (GDA) software tools to automatically map abstract
system designs to a standardized set of DNA components
(synthesis) and simulate the mapped system designs to check
that their behavior is correct (analysis). GDA decreases the
expert knowledge required of a designer by encoding it into

-4 ACS Publications © 2013 American Chemical Society

57

tools and the standardized data upon which these tools operate.
GDA also provides a structure for evaluating design decisions
on the behavior of quantitative models that can be specified and
communicated unambiguously.

In order to enable GDA and the efficient exchange of
functional data on DNA components, it is necessary that
structural descriptions of genetic technologies be coupled with
models for their behavior in a standardized manner. Existing
standards such as GenBank'’ and SBML describe DNA
sequences and biochemical models, respectively, but neither
standard inherently makes the critical connection between
DNA and models to enable simultaneous, modular composition
of structure and function. Even the most widely used database
for synthetic biology, the iGEM Registry of Standard Biological
Parts,"* does not offer an explicit, standardized means of linking
DNA components to models.

SBOL, an emerging standard for synthetic biology with
growing GDA tool support,>~" is well suited to the task of
describing DNA components for association with models. As
shown in Figure 1, SBOL currently captures the same
sequence-oriented information found in a GenBank file, but
unlike GenBank, it allows fully hierarchical annotation of DNA

Received: June 10, 2013
Published: August 26, 2013

dx.doi.org/10.1021/sb400066m | ACS Synth. Biol. 2014, 3, 57—66

pubs.acs.org/synthbio

ACS Synthetic Biology

Research Article

Collection
-urif1] : URI
-displayld[1] : String
-name[0..1] : String
-description[0..1] : String

0.*

preLes

® components >

DnaSequence

-uri[1] : URI
-nucleotides[1] : String

dnaSefiuence
0J.1

Q

DnaComponent

-uri[1] : URI

-displayld[1] : String
-name[0..1] : String
-description[0..1] : String
-type[0..] : URI

annotations subCorn::;omnt

ol.*

SequenceAnnotation

-uri[1] : URI

-bioStart[0..1] : Integer > 0
-bioEnd[0..1] : Integer >0
-strandf0..1] : '+' or '~

)

0.*

Figure 1. A Unified Modeling Language (UML) diagram for version 1.1 of SBOL."* The core data model consists of collections, DNA components,
DNA sequences, and sequence annotations. Each of these object classes has a Unique Reference Identifier (URI).”> DNA components are at the
center of SBOL and have a display ID, name, description, Sequence Ontology (SO)21 type, DNA sequence, and any number of sequence
annotations. Note that a sequence annotation points to a DNA subcomponent, thereby enabling fully hierarchical annotation. Also, the precedes
relationship of a sequence annotation can be used to indicate the relative ordering of DNA subcomponents.

components within DNA components, thereby mirroring the
hierarchy and modularity of models that are useful for
engineering systems. In regards to our requirements for
GDA, all that SBOL lacks is an accompanying hierarchical
description of the behavior of its DNA components.

Rather than create a new modeling standard within SBOL,
this paper describes a methodology that supplies behavioral
descriptions for SBOL using SBML. SBML is the preeminent
standard for modeling biological systems and is supported by
over 250 software tools, including our own software,
iBioSim.'”*> While the decision to use SBML may bias our
behavioral descriptions toward reaction-based models (see
Figure 2), it is also the case that SBML is an actively developed
standard with formal procedures for its extension via packages,
should the need arise for additional modeling formalisms to
represent DNA component behavior. One such package
recently released for testing is the hierarchical model composition
(comp) package,” which is supported by iBioSim to enable
hierarchical, modular design of genetic circuits. SBML also
provides guidelines for annotating models with metadata, that
is, data outside SBML that describes the elements of a SBML
model, which is the key capacity for connecting SBML to
SBOL.

Earlier research on the problem of connecting biochemical
models to DNA was carried out by Misirli et al., resulting in the
Model to Sequence Conversion (MoSeC) software tool.** MoSeC
can be used to automatically assemble a composite DNA
sequence from a SBML model, provided that the model is
composed of elements that are annotated with DNA sequences
and structured in accordance with the standard virtual parts
(SVP) approach.”® Our SBML-to-SBOL methodology builds
on the MoSeC approach by extending model annotation and
sequence assembly to handle a more general class of SBML
model. In particular, our methodology can be applied to

58

hierarchical SBML models constructed using the comp package
and to SBML models composed of elements that are not
necessarily structured such as the SVPs used by MoSeC.

2. RESULTS AND DISCUSSION

Our methodology for SBML-to-SBOL annotation and assembly
is implemented within our GDA software tool, iBioSim. An
iBioSim user may import SBOL files into their project, browse
and filter the DNA components from these files using the
iBioSim SBOL browser, and select DNA components to
annotate SBML models created or imported in iBioSim.
Automated assembly of a composite DNA component from the
annotated elments of a model is initiated when the model is
saved. This composite component then annotates the model
itself and is saved to a SBOL file of the user’s choice in their
project. If the user subsequently creates a hierarchical SBML
model with a submodel element that references the first model,
then the composite component annotating the first model
becomes a subcomponent of the composite component
assembled for the hierarchical model. In this way, the user
may build up a hierarchy of SBML models that is mirrored by
the hierarchy of the DNA components annotating these
models.

To illustrate the complete process, consider a composite
SBML model for a genetic toggle switch similar to those
originally designed by Gardner et al.* The overall model for
our toggle switch is composed of two submodels, one for a
gene expressing TetR plus GFP and repressed by Lacl (the
Lacl inverter) and one for a gene expressing Lacl and repressed
by TetR (the TetR inverter). Figure 2 displays one possible
iBioSim representation of the SBML models for the toggle
switch and its Lacl and TetR inverters.

In order to better facilitate a comparison between our SBML-
to-SBOL methodology and MoSeC, the Lacl inverter model

dx.doi.org/10.1021/sb400066m | ACS Synth. Biol. 2014, 3, 57—66

ACS Synthetic Biology

Research Article

| Lacl ‘ TetR_Jranslation_Rule TetR_Tr n,,.t e
input
TetR 3
output
T,.a@im_)l-' mRNA
\ internal)
/\ lfﬂernal ‘
GFP_Translation_Rule GFP_Tr nslat n_Rxn
A
Lacl
internal ,
(TetR ’ | Lacl)
input output :
acl
C1 c2
Lacl_Inve... TetR_Inve...
»
R TetR
internal
B C

Figure 2. iBioSim representation of the SBML models for the (a) Lacl inverter, (b) TetR inverter, and (c) genetic toggle switch. Blue ellipses are
species, purple circles are reactions, yellow squares are rules, blue squares are parameters, green rectangles are submodels, and red diamonds are
promoter elements that code for sets of reactions and species. Black arcs in the Lacl inverter model show which species and parameters are inputs
and outputs for which reactions and rules. The red arc in the TetR inverter model is a high-level modeling element that signifies repression of the
promoter element pTet by the species TetR, while the green arc signifies production of the species Lacl by the promoter element. Lastly, the labeled
arcs in the toggle switch model are port mappings that specify that its LacI and TetR species are the same as those species in the LacIl and TetR

inverter submodels.

uses SVP-like elements. Our methodology, however, can also
be applied to other more abstract models in which transcription
and translation are combined into a single production reaction,
such as those that iBioSim is capable of encoding with high-
level modeling elements for promoters and positive and
negative genetic regulation.'” As an example of the foregoing,
the TetR inverter model uses these special regulatory modeling
elements. All SBML files created for the toggle switch and its
Lacl and TetR inverters can be found in the Supporting
Information.

Model Annotation. The first step in our SBML-to-SBOL
methodology is to annotate the elements of models at the
lowest level of hierarchy, that is, those that contain no
submodels. An iBioSim user may accomplish this step by first
opening the appropriate editor for the SBML element they wish
to annotate and clicking the "Associate SBOL” button. Doing
so brings up a list of all DNA components currently annotating
the chosen element. By allowing more than one DNA
component to annotate a single element, our tool enables the
user to group adjacent DNA components without necessarily
having to include them as the subcomponents of a single
composite component and thereby introduce superfluous
hierarchy. This capability is useful for including DNA
components such as terminators that may not have their
behavior explicitly modeled but must be present for the design

59

to function correctly. For the purpose of selecting DNA
components to add to an element’s list, our tool includes a
SBOL browser (see Figure 3) that enables the user to filter
project DNA components based on their SO type and/or any
collections to which they belong.

Let us consider annotating the elements of the Lacl inverter
and TetR inverter models from our toggle switch example. In
the case of the Lacl inverter model, let us annotate its
transcription reaction with the Lacl-regulated promoter
BBa 114032, both of its translation rules with the ribosome
binding site (RBS) BBa_B0034, its TetR translation reaction
with the coding sequence (CDS) BBa_C0040, and its GFP
translation reaction with the CDS BBa E0040 and the
terminator BBa_B001S5. As for the TetR inverter model, let
us annotate its promoter element with the TetR-regulated
promoter BBa _R0040 and its Lacl species with the RBS
BBa B0034, the CDS BBa CO0012, and the terminator
BBa_B001S. All of these DNA components can be obtained
from the iGEM Registry,'* which has recently been extended
with the capacity to export parts in SBOL. To simplify these
DNA components for other examples in this paper, let us also
delete any sequence annotations they may have, thereby
making them noncomposite DNA components. The resulting
SBOL files can be found in the Supporting Information.

dx.doi.org/10.1021/sb400066m | ACS Synth. Biol. 2014, 3, 57—66

ACS Synthetic Biology

Research Article

Filter by Type: |coding sequence

Collections:

DNA Components:

all

BBa_C0012:
BBa_C0040:
BBa_C0061
BBa_C0062:

lacl
tetR
: lux!
luxr

BBa_E0040:

GFP

Display ID: BBa_E0040
Name: GFP

Annotations: NA
[Types: coding sequence

tgaactatacaaataataa

Description: green fluorescent protein derived from jellyfish Aequeora victoria wild-type GFP (SwissProt: P42212

DMNA Sequence: atgcgtaaaggagaagaactiticactggaatigtceccaaticttottgaattagatgotaatottaatggacacaaatittctatcagtggagagagtoaagotoatgcaacatacggaaaacttac
ccitaaatitatttgcactactggaaaactacctgttccatggocaacacttogtcactactitcggttatgotaticaatactitgcgagatacccagatcatatgaaacageatgactttttcaagagtaccatgeccgaagattatat
acaggaaagaactatattitcaaagatgacgggaactacaagacacgtgctgaagtcaagittgaaggtgatacecttgttaatagaatcgagttaaaagatattgatittaaagaagatggaaacaticttggacacaa
attggaatacaactataactcacacaatgtatacatcatggeagacaaacaaaagaatggaatcaaagttaacttcaaaattagacacaacattgaagatggaagegticaactageagaccattatcaacaaaatac
tccaattggogatggecctatectitaccagacaaccattacctgtccacacaatetgecctttcgaaagatcccaacgaaaagagagaccacatggtecticttgagtitgtaacagetgetgggattacacatggeatgga

Figure 3. SBOL Browser view of the coding sequence for GFP. The filter-by-type combo box may be used to view all DNA components of a
particular SO type within the project. The information displayed for a selected DNA component includes display ID, name, description, sequence
annotations, SO types, and DNA sequence. In this case, GFP is not a composite DNA component and therefore is not annotated with any

subcomponents.

modifies

produces

Figure 4. Graph constructed from the Lacl inverter model. Each vertex of the graph has been labeled with the type of SBML element to which it
correponds, while each edge has been labeled with the type of input/output relationship that exists between the SBML elements corresponding to
the edge’s origin and destination vertices. The DNA components stored at these vertices are shown using symbols taken from the SBOL visualization

standard.”” In particular, the bent arrow is a promoter, the half circle is a RBS, the box arrow is a CDS, and the “T

»

is a terminator.

DNA Component Assembly. The second step in our
SBML-to-SBOL methodology is to assemble composite DNA
components from the DNA components annotating the
elements of our models. An iBioSim user may accomplish
this step by simply saving their model, at which point iBioSim
takes over the two processes required for composite DNA
component assembly: graph construction and graph traversal.
In a nutshell, graph construction involves the conversion of an
annotated SBML model to a graph representation that captures
the flow of information through the model, while graph
traversal involves walking this graph and ordering its vertices
such that their stored DNA components can be concatenated as
subcomponents of a composite DNA component.

Graph Construction. During graph construction, vertices
are created for each SBML element in a model, and any DNA
components annotating a given element are stored at its
corresponding vertex. Next, edges directed from one vertex to
the next are created to capture the cause—and—effect
relationships between elements of the model. This step results
in edges pointing from the vertices for elements that represent
quantities (such as species or parameters) to the vertices for

60

elements that represent processes (such as reactions or rules)
and vice versa. The direction of an edge between a vertex for a
quantity element and a vertex for a process element is
determined by whether the quantity element is an input or
output of the process element. Figure 4 displays the graph
constructed from the annotated Lacl inverter model in our
toggle switch example.

In the case of a hierarchical SBML model, graph construction
must be modified to account for the presence of submodel
elements. Whenever a vertex is created for a submodel element,
if there are no DNA components directly annotating this
element, then any DNA components annotating its referenced
external model are stored at the vertex instead. In this way,
DNA components that annotate models lower in the hierarchy
are propagated upward to become subcomponents of DNA
components that annotate models higher in the hierarchy.

Next, edge creation must be modified in order to connect the
vertices for submodel elements to the vertices for other SBML
elements. If a SBML element is marked to replace or be
replaced by another element in an external model referenced by
a submodel, then a pair of edges is added to connect the vertex

dx.doi.org/10.1021/sb400066m | ACS Synth. Biol. 2014, 3, 57—66

ACS Synthetic Biology

Research Article

for the marked element to the vertex for the submodel and vice
versa. Edges are added in both directions between these vertices
because the cause—and—eflect relationships between elements
at different levels of the modeling hierarchy cannot be known
without combining the models and replacing or deleting their
elements as marked. Flattening the hierarchy of models and
associated DNA components in this manner, however, may not
always be necessary or desirable. Figure 5 displays the graph
constructed from the hierarchical toggle switch model following
the assembly of composite DNA components for the Lacl
inverter and TetR inverter models.

replaced by

Figure 5. Graph constructed from the hierarchical toggle switch
model. Each pair of edges in the graph has been labeled with the
model composition relationship between a species element in this
model and a species element in the external Lacl inverter or TetR
inverter model that is referenced by a submodel element in this model.
The composite DNA components stored at the submodel vertices are
shown by placing SBOL visual symbols for their subcomponents along
a solid line.

Flattening of a hierarchical model prior to graph construction
is necessary when doing so would change the set of genetic
constructs resulting from graph traversal. For example, the set
of assembled genetic constructs would change when an un-
annotated element in one model is marked to replace an
annotated element belonging to another model that is lower in
the hierarchy. Hence, our overarching strategy when assembling
a composite DNA component for a hierarchical model is to
construct two graphs, one for the model as it stands and one for
its flattened version, then traverse both graphs and compare the
partial and complete genetic constructs assembled thereof. If
the constructs match with respect to the URIs of their
noncomposite subcomponents, then our method annotates the
hierarchical model using the DNA component assembled from
the unflattened model. Otherwise, our method uses the DNA
component assembled from the flattened model. In this way,
our methodology seeks to preserve the hierarchy of assembled
DNA components, whenever possible, though not at the
expense of the set of genetic constructs implied by the cause-
and-effect relationships at the lowest level of the modeling
hierarchy.

Graph Traversal. During graph traversal, a depth-first search
(DFS) is performed to order the vertices of the graph such that
their stored DNA components may be concatenated to form a
valid partial or complete genetic construct. A basic DFS starts at
a vertex with no incoming edges and follows outgoing edges
until a vertex with no outgoing edges is encountered. The
search then backtracks until it can follow an edge not previously
taken. This process repeats until all vertices in the graph have
been encountered and ordered accordingly. However, because
it is desirable for the ordering of our vertices to correspond to a
valid ordering of their stored DNA components, our graph
traversal cannot rely on a DFS alone, since the choices made by
the DFS at branches in the graph are uninformed. For example,
there are two possible vertex orderings that a DFS could
produce when applied to the Lacl inverter graph in Figure 4,
only one of which corresponds to a valid genetic construct.

Consequently, our method needs an arbiter to determine
when the DFS has chosen a path that leads to an invalid genetic
construct. For this purpose, our method uses deterministic finite
automata (DFAs) constructed from regular expressions. In
computer science, a regular expression is a common means of
specifying a regular language, or collection of patterns, while a
DFA is a class of state machine used to match inputs against the
regular language underlying its construction. Previously, it has
been shown that a context-free language composed of DNA
component types can be used to verify synthetic genetic
constructs, and it has been speculated that simg)ler regular
languages would be sufficient for this task as well.*®

The default regular expression of iBioSim is promoter,
(RBS,CDS)*terminator*, which specifies that DNA components
are to be assembled into genetic constructs composed of a
promoter followed by one or more RBS—CDS pairs and one or
more terminators. At the start of graph traversal, either this
default expression or a custom expression is translated into
several DFAs as described in the Methods section. During
graph traversal, these DFAs process the SO types of the
noncomposite DNA components stored at each vertex
encountered. Whenever an invalid genetic construct would be
assembled, backtracking is initiated to find a valid solution if
possible. Figure 6 shows a sample DFA translated directly from
iBioSim’s default regular expression for a complete genetic
construct.

When our methodology is applied to the toggle switch
example, two separate graph traversals are performed on the
hierarchical and flattened versions of the toggle switch model.
Since the toggle switch components assembled in this way are
identical, the component chosen to annotate the toggle switch
model is that which possesses the greatest degree of hierarchy,
that is, that assembled from the hierarchical version of the
model. This composite toggle switch component contains both

promoter

0@9

terminator

terminator

Figure 6. DFA translated from iBioSim’s default regular expression for a complete genetic construct. State SO is the start state. If an input matches
the label of an outgoing edge of the current state, then a transition is made from this state to the edge destination. If there is no match for an input,
then the DFA rejects the entire input sequence. The DFA only accepts an input sequence if it ends in the accept state S4.

61

dx.doi.org/10.1021/sb400066m | ACS Synth. Biol. 2014, 3, 57—66

ACS Synthetic Biology

Research Article

Lacl inverter and TetR inverter subcomponents, which in turn
contain non—composite subcomponents such as promoters,
terminators, etc. By comparison, the other (also composite)
toggle switch component contains these noncomposite
subcomponents, but not the intermediate Lacl inverter or
TetR inverter components. The composite SBOL and
annotated SBML resulting from the application of our
methodology to the toggle switch can be found in the
Supporting Information.

Discussion. This paper describes a methodology for
annotating SBML models with SBOL, which is implemented
it in our GDA software tool, iBioSim. Our SBML-to-SBOL
methodology builds on the results of previous software tools
such as MoSeC by extending the processes of graph
construction and traversal, which form the basis for model-to-
DNA component assembly. In particular, this paper enhances
graph construction to handle hierarchical SBML models built
via the comp package and a greater variety of SBML elements
such as submodels and events. This paper also supplements
graph traversal with an arbiter in the form of a DFA constructed
from a regular expression for patterns of SO types, thereby
providing the user with a means of programming our
methodology to recognize a greater variety of genetic
constructs. By allowing the user to customize the source of
arbitration for graph traversal, our SBML-to-SBOL method-
ology is more flexible when it comes to assembling DNA
components into a variety of genetic constructs.

Still, there is one major assumption that dictates the class of
genetic constructs that it is possible to assemble via our
methodology. Namely, our method assumes that the partial
ordering of the modeling elements that describe the behavior of
a genetic construct, as inferred from the cause-and-effect
relationships between these elements, is equivalent to the
partial ordering of the DNA components that annotate these
elements, from which a total ordering or sequence of these
DNA components that is a valid genetic construct may be
determined. By means of this assumption, however, our
methodology can be used to efficiently create a hierarchical
library of SBML models annotated with SBOL DNA
components, a useful input to any future genetic technology
mapping algorithm that would automate the process of
composing DNA components to satisfy a behavioral specifica-
tion.

Our future research on model-to-DNA component annota-
tion and assembly involves working within the SBOL
Developers Group to develop a modeling extension for
connecting back from SBOL elements to models written in
SBML and other modeling standards. Currently, a BioBricks
Foundation Request for Comments (BBF RFC)*’ describing
the modeling extension is being written. Upon its completion,
the RFC will be made publicly available and submitted for
approval to the SBOL Developers Group as a whole.

Once it is integrated into SBOL, the modeling extension will
set a precedent for SBOL designs to serve as the central hub for
attaching nonsequence related information on DNA compo-
nents and the devices and systems to which they belong. In the
case of the SBOL modeling extension, this information will be
models for system behavior, the languages of these models
(eg, SBML, CellML*), their frameworks (e.g, ordinary
differential equation, stochastic), the roles they play (e.g,
simulation, specification), and lists of interactions between
system components that are derivable from these models.

62

Other extensions will introduce different types of information
such as host context and measurements.

The end goal is to enable different GDA software tools to
exchange a single genetic design, yet allow each tool to focus on
the aspects of the design that are most relevant to that tool’s
purpose. For example, iBioSim would be used to associate
SBOL designs with SBML models to create a library of
modeled designs, synthesize from the library a composite
SBOL design associated with a composite SBML model to
meet a behavioral specification, and finally verify the behavior of
the composite design through simulation and model checking
of its SBML against the specification. The composite SBOL
design could then be sent to another tool to perform other
steps of the genetic design process such as the determination of
a physical assembly protocol.

B METHODS

Model Annotation. Similar to the MoSeC approach, our
SBML-to-SBOL methodology leverages the resource description
framework (RDF)>" annotations serialized in extensible markup
language (XML)** and follows the guidelines for such
annotations as given by the creators of SBML. Figure 7

<SBML_ELEMENT + + + metaid="SBML_META _ID" + + + >
<annotation>
<ModelToSBOL xmlns="http://sbolstandard.org/modeltosbol /1.0#”>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:mts="http://sbolstandard.org/modeltosbol /1.0#”>
<rdf:Description rdf:about=“#SBML_META _ID”>

<rdf:Seq>
<rdfli rdf:resource="DNA_ COMPONENT _URI"/>

</rdf:Seq>
< /rdf:Description>
</rdf:RDF>

</ModelToSBOL>
< /annotation>
</SBML_ELEMENT>

Figure 7. General form for a RDF/XML SBML-to-SBOL annotation
on a SBML element. The first line of XML is that of the SBML
element, which contains a meta ID among other information as
indicated by +. Next is the SBML-to-SBOL annotation, with its first
two lines containing namespaces that distinguish it from other types of
annotations and indicate how it should be processed. The actual
content of the annotation is highlighted in red, green, and blue. The
red line is the subject of the annotation, which is a SBML element
identified using its meta ID. The green line is the predicate of the
annotation, which indicates that the subject is associated with DNA
components. The blue line is the object of the annotation, which is an
ordered sequence of URIs identifying a list of DNA components.

displays the typical format for our SBML-to-SBOL annotations.
Each annotation specifies a SBML element such as a model,
species, reaction, rule, parameter, event, or submodel as its
subject and a list of DNA components as its object.

DNA Component Assembly. Algorithm 1 lies at the root
of the process for automatically assembling composite DNA
components with iBioSim. The algorithm implements and
composes the aforementioned processes of graph construction
and graph traversal, selecting a sequence of starting vertices V'S
for graph traversal. The algorithm also initiates the process of
constructing a sequence of DFAs, D = (DC, DP, DS, DT),
which is a necessary input for recognizing genetic constructs
during graph traversal.

dx.doi.org/10.1021/sb400066m | ACS Synth. Biol. 2014, 3, 57—66

ACS Synthetic Biology

Research Article

Algorithm 1: Assemble Composite DNA Component

Algorithm 3: Construct Graph From Submodels

Input: Regular expression v and SBML model M = (S, R, L, P, N, C) where S is a
set of species, R is a set of reactions, L is a set of rules, P is a set of global
parameters, N is a set of events, and C' is a set of submodels

Output: Composite DNA component k

1 (G, p) < CONSTRUCT-GRAPH(M)
2 if |C| > 0 then
3 _ G + CONSTRUCT-GRAPH-FROM-SUBMODELS(G, 11, M)

VS ()
for v € V do
if predecessors(v) = () then
| VS« VS|

8 D <+ CONSTRUCT-DFAS(u)

9 VO «+TRAVERSE-GRAPH(G, V'S, (), (), (), {}, D)
for vo € VO do

1 L addSubComponents(k, dnaComponents(vo))

o
°

12 return k

Primitive routines called by Algorithm 1 include the vertex
routines predecessors and dnaComponents, as well as, the DNA
component routine addSubComponents. The routine predeces-
sors returns all vertices that precede a given vertex in the graph
G, while dnaComponents returns all DNA components that are
stored at the given vertex during graph construction. Lastly,
addSubComponents takes a list of DNA components as input
and makes them subcomponents of the given DNA
component.

Graph Construction. Algorithms 2 and 3 handle the
process of graph construction. Algorithm 2 initiates graph

Algorithm 2: Construct Graph
Input: SBML model M = (S, R, L, P, N, C) where S is a set of species, R is a set of
reactions, L is a set of rules, P is a set of global parameters, N is a set of
events, and C is a set of submodels
Output: Graph G = (V, F) and mapping u: X =V
1V«+0
2 E+ 0
3 X=SURULUPUN
4 for z € X do
5 dnaComponents(v) < PARSE-ANNOTATION (annotation(z))
6 V+VUuv
7 | p(z) v
8 for r € Rdo
9 for s € reactants(r) Umodifiers(r) do
w0 | [B BUu(s)ur)
11 for z € PARSE-IDENTIFIERS(kineticLawMath(r)) do
12 | | B e BUu@),u0)
13 for s € products(r) do
u || B BUG),us)

15 for [€ L do
16 if isAssignmentRule(l) V isRateRule(l) then
17 L for © € PARSE-IDENTIFIERS(math(l)) do

18 L E + B U (u(z), u(l))

19 E + E U (u(l), p(variable(l)))

20 for n € N do

21 for z €

PARSE-IDENTIFIERS (trigger M ath(n))UPARSE-

IDENTIFIERS(delay M ath(n))UPARSE-IDENTIFIERS (priority M ath(n)) UPARSE-
IDENTIFIERS(event Assignment Maths(n))

do

n | | Be BUG@),un)

23 for z € eventAssignments(n) do

u | | B BUum), o)

25 return (G, u)

construction from the nonhierarchical elements of the input
SBML model and creates a mapping from these elements to
their corresponding graph vertices to assist in edge creation.
Algorithm 3, on the other hand, finishes graph construction
from any submodel elements, if they are present.

Functions called by Algorithms 2 and 3 include PARSE—
ANNOTATION, PARSE—-IDENTIFIERS, and LOAD—EX-
TERNAL—MODEL. The PARSE-ANNOTATION function
takes as input a RDF/XML annotation and determines if it is a
SBML-to-SBOL annotation. If so, then the function resolves

63

Input: Graph G = (V, E), mapping p : X — V, and SBML model
M = (S,R,L, P,N,C) where S is a set of species, R is a set of reactions, L is
a set of rules, P is a set of global parameters, N is a set of events, and C' is a
set of submodels

Output: Graph G = (V. E)

1 for ce C do

2 dnaComponents(v) < PARSE-ANNOTATION (annotation(c))

if |dnaComponents(v)| = 0 then

L W < LOAD-EXTERNAL-MODEL(c)

N

oo w

dnaComponents(v) < PARSE-ANNOTATION (annotation(W'))
V+Vu{v}
7 ule) v
8 X=SURULUPUN
9 for z € X do
10 for ¢ € submodels(replacements(z)) U submodel(replaced By(z)) do
1 E — EU (u(z), p())
E — EU (u(c), p(x))

o

13 return G

the list of URIs specified as the annotation object and returns
the corresponding list of DNA components. The PARSE—
IDENTIFIERS function takes as input a MathML object and
returns the SBML elements corresponding to the identifiers
(not operators or numbers) found in the MathML. Lastly, the
LOAD—EXTERNAL—MODEL function takes as input a
submodel, determines its corresponding external model
definition, and returns the external model defined.

Primitive routines called by Algorithms 2 and 3 are indicated
with italicized text and belong to graph vertices as well as
SBML elements. The routines belonging to SBML elements
return a variety of data on these elements as described in the
SBML specification,® while the vertex routine dnaComponents
returns the list of DNA components currently stored at the
given vertex.

DFA Construction. While this paper does not present the
algorithmic details of DFA construction, it does briefly describe
the process here. DFA DC recognizes patterns of SO types
corresponding to complete genetic constructs. It is constructed
by first quantifying the user’s regular expression for a complete
genetic construct with the + (one or more) operator and then
converting the quantified regular expresssion to a DFA using a
method similar to that of McNaughton and Yamada.** For
example, the regular expression p(r,c)"t" would be quantified as
(p(r,c)*t")* and then converted to a DFA that can recognize
patterns such as p, r, ¢, r, ¢, t, tand p, 1, ¢, t, p, 1, ¢, L.

DFA DT, however, also recognizes patterns for partial
genetic constructs that end with the same type of DNA
component as a complete genetic construct. It is constructed by
first expanding the user’s quantified expression with a
nonstandard operator and then converting the expanded
expression to a DFA as before. For example, the quantified
expression (p(r,c)*t")* would be expanded to (p(r, ¢)*t'I(r, cl
)(r, o)*t'lt, #)(p(r, c)*t)* and then converted to a DFA that
can recognize patterns such as r, ¢, r, ¢, t, tand r, ¢, t, p, 1, ¢, L.
The full semantics for our expansion operator can be found in
the Supporting Information.

Unlike DT, DFA DS also recognizes patterns for partial
genetic constructs that begin rather than end with the same
type of DNA component as a complete genetic construct. It is
constructed in the same manner as DT, with the exception that
the ordering of the user’s quantified expression is reversed prior
to its expansion. Hence, the resulting DFA can recognize
patterns such as ¢, r, ¢, r, pand ¢, 1, p, t, ¢, r, p. When DS is used
during graph traversal, its input SO types are reversed to ensure
proper construct recognition.

Lastly, DFA DP also recognizes patterns for partial genetic
constructs with no restrictions on starting or terminal DNA

dx.doi.org/10.1021/sb400066m | ACS Synth. Biol. 2014, 3, 57—66

ACS Synthetic Biology

Research Article

component types. It is constructed by making a copy of DT and
marking every one of its states as accepting. The resulting DFA
can recognize patterns such asr, ¢ t, p and r, ¢, t, protp.

Graph Traversal. Algorithms 4, S, 6, 7, and 8 handle the

process of graph traversal. Algorithm 4 composes the other

Algorithm 4: Traverse Graph

27
28
29
30

Input: Graph G = (V, E), sequence of starting vertices V.S, sequence of current
vertices VC, sequence of local vertices V'L, sequence of ordered vertices VO,
set of global vertices VG, and sequence of DFAs D = (DC, DP, DS, DT

Output: Sequence of ordered vertices VO

while |V'S| > 0 do

if [VC| =0 then

| VC«VO|VS,

while [VC| > 0 do

if runDF A(DP, types(VCy)) then

runDF A(DT, types(V Cy))

VL« VL||VC,

VN «+DETERMINE-NEXT-VERTICES(VS,VC,VL, VG, DP, DT)

VC + sub(VC,1,|VC| - 1)

if [VN| =0 then

while |[VC| > 0AVC, € VL do
L | VO« sub(VC,1,|VC| —1)

else if |V N| =1 then
| VC+VN|IvC

else if |[VN| > 1 then
L return TRAVERSE-BRANCHES(G,VS,VC,VN,VL,VO,VG, D)

else
| return ()

reset(DP)
reset(DT)
if “ORDER-LOCAL-VERTICES(VL,VO, DS, DT) then
L return ()
VG+ VL
VL <+ ()
while [VS| > 0AVS, € VG do
| VS « sub(VS,1,[VS| - 1)
if [VG| < |V| then
| return TRAVERSE-CYCLES(G,VO,VG, D)

else
| return VO

graph traversal algorithms to find a sequence of ordered vertices
VO with a particular property. Namely, when the DNA
components stored at each vertex in VO are concatenated to
form a composite DNA component, the result is one or more
valid genetic constructs.

Algorithm 4 finds VO using three sequences of vertices and

one set of vertices to manage a series of DFSs. Each vertex in
the sequence V& is the starting point for a DFS that potentially
results in a valid genetic construct. VS is initially populated with
vertices that have no incoming edges but is later expanded with
vertices that follow the boundary of a genetic construct (as
determined in Algorithm $).

Algorithm 5: Determine Next Vertices

o oA @ N R

10
11

12

Input: Sequence of starting vertices V'S, sequence of current vertices VC, sequence of
local vertices V'L, set of global vertices VG, partial construct DFA DP, and
terminal construct DFA DT

Output: Sequence of next vertices VN

VN « ()

for vn € successors(VCy) do

VP < predecessors(vn) \ VCy

if [V P| =0V (~inStartState(DT) A —inAcceptState(DT))V

(VPCVLAwn ¢ VL)V (VP CVGAvn ¢ VG) then

if |types(vn)| > 0 A
((inA(:(:reptSmtc(DT) A =checkDF A(DT, firstType(vn)))V

—checkDF A(DP, firsLType(vn))) then
L VS« VS|lon

else if vn ¢ VL then
L VN < VN|lvn

return VN

Next, sequence VC stores the vertices that are currently

under consideration during a DES from a given starting vertex.

64

Though only one vertex from VC is considered at a time (the
first vertex in the sequence, VC,), VC may contain more than
one vertex when the graph branches, and it becomes necessary
to keep track of the root vertices for the branches that are not
immediately traversed in a depth-first fashion. When a vertex
from VC is considered, it is replaced with its successors as
determined by Algorithm 5. When VC becomes empty, it is
repopulated using the next vertex from VS, which signifies the
start of a new DFS.

The sequence VL stores off each vertex removed from VC,
thereby keeping a record of the order in which the vertices that
are local to the current DFS have been visited. At the
conclusion of a given DFS, VL is composed with the sequence
of ordered vertices VO in accordance with Algorithm 6. VL is

Algorithm 6: Traverse Branches
Input: Graph G = (V, E), sequence of starting vertices V'S, sequence of current
vertices V' C, sequence of next vertices VN, sequence of local vertices VL,
sequence of ordered vertices VO, set of global vertices VG, and sequence of
DFAs D = (DC, DP, DS, DT)
Output: Sequence of ordered nodes VBO
1 for i+ 0..]VN|—1do

2 for j «i..[VN|—1do
3 VN «+ VN|[VN;
4 VN « sub(VN,0,i)||sub(VN,i+1,|VN| —1)
5 VBO < TRAVERSE-
GRAPH(G, copy VS,V N || copy VC,copy VL,copy VO,
6 copy VG, copy D)
7 if [VBO| > 0 then
8 | return VBO
9 return ()

also added to the set of globally visited vertices VG, which
keeps track of the vertices that have been visited by previous
DEFSs. VG is used at the end of Algorithm 4 to determine
whether any vertices have yet to be visited, in which case
Algorithm 8 is required to order them. Finally, VL and VG are
also used to prune previously visited vertices from VC and VS,
respectively.

Primitive routines called by Algorithm 4 include the DFA
routines runDFA and reset, as well as the vertex routine types
and sequence routine sub. The routine runDFA takes a
sequence of strings as input, transitions the given DFA to a
new state accordingly, and returns a Boolean indicating whether
the new state is accepting. When called with the partial
construct DFA DP, this routine determines if an invalid genetic
construct would be formed, in which case Algorithm 4
terminates and returns nothing.

The input for runDFA is supplied by types, which returns the
SO type strings for the list of DNA components stored at a
given vertex. The routine reset, on the other hand, returns the
given DFA to its start state and is called at the end of each DFS.
Lastly, sub returns a subsequence of the given sequence that
starts at the indicated index and has the indicated length. This
routine is used during Algorithm 4 to effectively delete the first
element in a sequence by replacing the sequence with a
subsequence that starts at index one and has a length equal to
that of the sequence minus one.

As noted previously, Algorithm S determines which vertices
succeeding the current vertex VC, are added to VC or VS for
future consideration. The algorithm accomplishes this task by
testing two sets of conditions. The first set of conditions checks
for whether a successor vertex vn can and should be visited by
another DFS, while the second set checks for whether vn
should be the starting point for a new DFS.

dx.doi.org/10.1021/sb400066m | ACS Synth. Biol. 2014, 3, 57—66

ACS Synthetic Biology

Research Article

In the first set of conditions, if vn has predecessors other than
V C,, then one of two conditions must be true for the current
DEFS to continue. Either the current DFS must be in the middle
of a genetic construct, or all other predecessors of vn must have
already been visited during the current DFS or other DFSs. The
latter condition guarantees that vn is visited at least once, while
the former prevents vn from being visited more than once
unless it and its successive vertices potentially store DNA
components that appear in more than one genetic construct.

For example, two different promoters could promote the
transcription of the same RBS—CDS—terminator combination.
Even though this combination should appear in two different
locations on DNA, it could annotate a single element of the
model such as a species that represents the mRNA resulting
from transcription at both promoters, or perhaps a reaction that
represents the translation of said mRNA into protein. Hence,
using our methodology, the vertex resulting from such a
modeling element would have to be visited twice in order to
obtain two separate instances of the RBS—CDS—terminator
combination on DNA.

In the second set of conditions, if vn stores any DNA
components, then there is a chance that it marks the beginning
of a new genetic construct and should be added to VS instead
of VC. This is the definitely the case if the current DFS is at the
end of a genetic construct and the first DNA component stored
at vn has a SO type other than that of a DNA component found
at the end of a complete genetic construct. If the current DFS is
not at the end of a genetic construct and the first component at
vn would lead to an invalid construct, then it is at least possible
that vn starts a new genetic construct. When neither of these
conditions are true, vn is added to VC, provided that it has not
already been visited by the current DFS.

Primitive routines called by Algorithm $ that have not been
described elsewhere include the DFA routines inAcceptState,
inStartState, and checkDFA, as well as, the vertex routine
firstType. Routines inAcceptState and inStartState return
Booleans indicating whether the given DFA is in its accept
state or start state, respectively. The routine checkDFA
functions similarly to runDFA, but only returns a Boolean
indicating whether the given DFA would be in an accept state
after processing a list of input strings and does not actually
transition the DFA to a post—input state. Finally, firstType
returns the SO type of the first DNA component in a list stored
at the given vertex.

Once Algorithm 5 has determined which vertices will be
added to VC, if there are more than one then Algorithm 6
handles the process of finding the order in which these next
vertices should be added to VC so that a valid genetic construct
is obtained. The algorithm achieves this task by permuting the
sequence of next vertices VN and recursively calling Algorithm
4 with copies of relevant data structures (in case the call fails
and the next permutation must be tried).

When the current DES terminates, Algorithm 7 handles the
process of composing the sequence of vertices ordered by the
DFS (VL) with the sequence of vertices ordered by previous
DFSs (VO). The algorithm solves this problem using the
starting and terminal construct DFAs DS and DT to determine
whether VL should be concatenated at the beginning or end of
VO. While complete genetic constructs can generally be
concatenated in any order without introducing cis-interactions
between DNA components within these constructs, care must
be taken when composing partial genetic constructs. For
instance, when composing a single promoter with a RBS—

65

Algorithm 7: Order Local Vertices
Input: Sequence of local vertices V'L, sequence of ordered vertices VO, starting
construct DFA DS, and terminal construct DFA DT
Output: Sequence of ordered vertices VO
1 if [types(VL)| =0V |types(VO)| =0V
2 (checkDF A(DS, types(V L)) A checkDF A(DT, types(VO))) then
3 L VO <+ VO||VL

4 else if checkDF A(DS, types(VO)) A checkDF A(DT, types(V L)) then
s | VO« VI|[VO

6 else

7 L return FALSE

8 return TRUE

CDS—terminator combination that it should not cis-regulate,
the promoter must be placed immediately after the RBS—
CDS—terminator combination.

Lastly, Algorithm 8 is responsible for traversing any vertices
that are unvisited by the primary graph traversal, that is, vertices

Algorithm 8: Traverse Cycles
Input: Graph G = (V, E), sequence of ordered vertices VO, set of global vertices VG,
and sequence of DFAs D = (DC, DP, DS, DT)
Output: Sequence of ordered vertices VCO
1 VO« V\VG
2 VCS « 0
3 for ve € VC do
4 if firstType(ve) C startingTypes(DC') then
5 L L VCS «+ VCSUwe

6 for i < 0..1 do

7 for ves € VC'S do

8 VCO +TRAVERSE-GRAPH(G, (ves), (), (), copy VO, copy VG, copy D)
9 if [VCO| > 0 then

10 | return VCO

11 VCS + VC\VCSs

2 return ()

-

that belong to isolated, strongly connected subgraphs. These
are cyclic portions of the graph that lack vertices with zero
incoming edges to serve as natural starting points for a traversal
and that are not reachable from other portions of the graph.
The algorithm solves the problem of visiting these cycles by
first identifying within them potential starting vertices that store
a first DNA component that shares a SO type with a first
component in a complete genetic construct. Next, the
algorithm tries these starting vertices one at a time by
recursively calling Algorithm 4 with copies of relevant data
structures in case a given starting vertex does not produce a
valid solution. If no valid solutions can be produced in this way,
then all remaining vertices within the cycles are tried as starting
vertices in the aforementioned manner.

B ASSOCIATED CONTENT

© Supporting Information

SBOL file and SBOL-annotated SBML files for the genetic
toggle switch and its subcomponents, as well as a PDF file
describing an expansion operator for regular expressions. This
material is available free of charge via the Internet at http://
pubs.acs.org/.

H AUTHOR INFORMATION

Corresponding Authors
*E-mail: n.roehner@utah.edu.
*E-mail: myers@ece.utah.edu.

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

We acknowledge the members of the SBOL Developers Group,
in particular Goksel Misirli and Anil Wipat, for helpful feedback

dx.doi.org/10.1021/sb400066m | ACS Synth. Biol. 2014, 3, 57—66

http://pubs.acs.org/
http://pubs.acs.org/
mailto:n.roehner@utah.edu
mailto:myers@ece.utah.edu

ACS Synthetic Biology

Research Article

on the material presented in this paper. This material is based
upon work supported by the National Science Foundation
under Grant Nos. CCF-0916042 and CCF-1218095. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science
Foundation.

B REFERENCES

(1) Atsumi, S., and Liao, J. C. (2008) Metabolic engineering for
advanced biofuels production from Escherichia coli. Curr. Opin.
Biotechnol. 19, 414—419.

(2) Keasling, J. D., and Chou, H. (2008) Metabolic engineering
delivers next-generation biofuels. Nat. Biotechnol. 26, 298—299.

(3) Brazil, G. M., Kenefick, L., Callanan, M., Haro, A., de Lorenzo, V.,
Dowling, D. N, and O’Gara, F. (1995) Construction of a rhizosphere
pseudomonad with potential to degrade polychlorinated biphenyls and
detection of bph gene expression in the rhizosphere. Appl. Environ.
Microbiol. 61, 1946—1952.

(4) Cases, I, and de Lorenzo, V. (1995) Genetically modified
organisms for the environment: Stories of success and failure and what
we have learned from them. Int. Microbiol. 8, 213—222.

(5) Ro, D.-K,, Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K.
L, Ndungy, J. M,, Ho, K. A, Eachus, R. A, Ham, T. S,, Kirby,],
Chang, M. C. Y., Withers, S. T., Shiba, Y., Sarpong, R., and Keasling, J.
D. (2006) Production of the antimalarial drug percursor artemisinic
acid in engineered yeast. Nature 440, 940—943.

(6) Anderson, J. C., Clarke, E. J, and Arkin, A. P. (2006)
Environmentally controlled invasion of cancer cells by engineering
bacteria. J. Mol. Biol. 35S, 619—627.

(7) Endy, D. (2005) Foundations for engineering biology. Nature
438, 449—4S3.

(8) Arkin, A. (2008) Setting the standard in synthetic biology. Nat.
Biotechnol. 26, 771—774.

(9) Peccoud, J., Anderson, J. C., D. Chandran, D. D., Galdzicki, M.,
Lux, M. W., Rodriquez, C. A,, Stan, G.-B., and Sauro, H. M. (2011)
Essential information for synthetic DNA sequences. Nat. Biotechnol.
29, 22.

(10) Galdzicki, M.et al. Synthetic Biology Open Language (SBOL)
Version 1.1.0. BBF RFC 87, 2012; DOI: 1721.1/73909.

(11) Galdzicki, M. (2013) SBOL: A community standard for
communicating designs in synthetic biology. Figshare, DOI: 10.6084/
m9.figshare.762451.

(12) Hucka, M, et al. (2003) The Systems Biology Markup Language
(SBML): A medium for representation and exchange of biochemical
network models. Bioinformatics 19, 524—531.

(13) Bilofsky, H. S., and Christian, B. (1988) The GenBank genetic
sequence data bank. Nucleic Acids Res. 16, 1861—1863.

(14) iGEM Registry. 2003; http://parts.igem.org.

(15) Chandran, D., Bergmann, F. T. and Sauro, H. M. (2009)
TinkerCell: Modular CAD tool for synthetic biology. J. Biol. Eng. 3, 19.

(16) Czar, M. J,, Cai, Y. Z., and Peccoud, J. (2009) Writing DNA
with GenoCAD. Nucleic Acids Res. 37, W40—W47.

(17) Densmore, D.; Van Devender, A.; Johnson, M.; Sritanyaratana,
N. (2009) A platform-based design environment for synthetic
biological systems. The Fifth Richard Tapia Celebration of Diversity in
Computing Conference: Intellect, Initiatives, Insight, and Innovations New
York, pp 24-29.

(18) Chen, J., Densmore, D., Ham, T. S., Keasling, J. D., and Hillson,
N. J. (2012) DeviceEditor visual biological CAD canvas. J. Biol. Eng. 6,
1.

(19) Madsen, C., Myers, C., Patterson, T., Roehner, N., Stevens,]J.,
and Winstead, C. (2012) Design and test of genetic circuits using
iBioSim. IEEE Des. Test 29, 32—39.

(20) Berners-Lee, T.; Fielding, R; Masinter, L. (2005) Uniform
Resource Identifier (URI): Generic Syntax, IETF RFC 3986, The
Internet Society; http://tools.ietf.org/html/rfc3986.

66

(21) Eilbeck, K., Lewis, S. E,, Mungall, C. J., Yandell, M., Stein, L.,
Durbin, R, and Ashburner, M. (2005) The Sequence Ontology: A tool
for the unification of genome annotations. Genome Biology 6, R44.

(22) Myers, C. J., Barker, N., Jones, K., Kuwahara, H., Madsen, C.,
and Nguyen, N.-P. D. (2009) iBioSim: A tool for the analysis and
design of genetic circuits. Bioinformatics 25, 2848—2849.

(23) Smith, L. P; Hucka, M.; Hoops, S.; Finney, A.; Ginkel, M;
Myers, C. J; Moraru, L; Liebermeister, W. SBML Level 3 package
specification: Hierarchical Model Composition. SBML Package
Specification, 2012; http://sbml.org/Documents/Specifications/
SBML_Level 3/Packages/Hierarchica_Model Composition_(comp)
(accessed May 24, 2012).

(24) Misirli, G., Halliman, J. S., Yu, T., Lawson, J. R, Wimalaratne, S.
M., Cooling, M. T, and Wipat, A. (2011) Model annotation for
synthetic biology: Automating model to nucleotide sequence
conversion. Bioinformatics 27, 973—979.

(25) Cooling, M. T., Rouilly, V., Misirli, G., Lawson,], Yu, T,
Hallinan, J., and Wipat, A. (2010) Standard Virtual Biological Parts: a
repository of modular modeling components for synthetic biology.
Bioinformatics 26, 925—931.

(26) Gardner, T. S, Cantor, C. R, and Collins, J. J. (2000)
Construction of a genetic toggle switch in Escherichia coli. Nature 403,
339-342.

(27) Quinn, J; Beal, J; Bhatia, S;; Cai, P; Chen, J,; Clancy, K;
Hillson, N. J.; Galdzicki, M.; Maheshwari, A.; Umesh, P.; Pocock, M.;
Rodriguez, C.; Stan, G.-B.; Endy, D. Synthetic Biology Open Language
Visual (SBOL Visual), Version 1.0.0. BBF RFC 93, 2013; DOI:
1721.1/78249.

(28) Cai, Y., Hartnett, B., Gustafsson, C., and Peccoud, J. (2007) A
syntactic model to design and verify synthetic genetic constructs
derived from standard biological parts. Bioinformatics 23, 2760—67.

(29) The BioBricks Foundation: RFC. 2008; http://openwetware.
org/wiki/The_BioBricks_Foundation:RFC (accessed Aug. 8, 2013).

(30) Hedley, W. J., Nelson, M. R,, Bellivant, D. P., and Nielsen, P. F.
(2001) A short introduction to CellML. Phil. Trans. R. Soc. Lond. A
359, 1073—1089.

(31) Lassila, O.; Swick, R. RDF/XML syntax specification (revised).
W3C Recommendation, 2004; http://www.w3.org/TR/rdf-syntax-
grammar/ (accessed May 28, 2013).

(32) Bray, T.; Paoli, J.; Sperber-McQueen, C. M.; Maler, E.; Yergeau,
F. Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C
Recommendation, 2008; http://www.w3.org/TR/xml/ (accessed May
28, 2013).

(33) Hucka, M.; Bergmann, F. T.; Hoops, S.; Keating, S. M.; Sahle,
S.; Schaff, J. C,; Smith, L. P.; Wilkinson, D. J. The Systems Biology
Markup Language (SBML): language specification for Level 3 Version
1 Core. SBML Specification, 2010; http://sbml.org/Documents/
Specifications#SBML_Level 3 Version 1 Core (accessed May 25,
2012).

(34) McNaughton, R, and Yamada, H. (1960) Regular expression
and state graphs for automata. IEEE Trans. Comput. EC—9, 39—47.

dx.doi.org/10.1021/sb400066m | ACS Synth. Biol. 2014, 3, 57—66

http://parts.igem.org
http://tools.ietf.org/html/rfc3986
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/Hierarchica_Model_Composition_(comp)
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/Hierarchica_Model_Composition_(comp)
http://openwetware.org/wiki/The_BioBricks_Foundation:RFC
http://openwetware.org/wiki/The_BioBricks_Foundation:RFC
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/xml/
http://sbml.org/Documents/Specifications#SBML_Level_3_Version_1_Core
http://sbml.org/Documents/Specifications#SBML_Level_3_Version_1_Core

